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J. Phys.: Condens. Matter 2 (1990) 4099-4110. Print,ed in the UK 

Phason motion of a two-dimensional domain wall network: 
effective mass, interactions and effect of anharmonicity 

Neil D Shrimptontt and BCla J06ss 
Ottawa-Carleton Institute for Physics, University of Ottawa Campus, Ottawa, On- 
tario, Canada K1N 6N5 

Abstract. We examine the phason dynamics of a tw*dimensional honeycomb net- 
work of domain walls which is most clearly seen in the lowest vibrational mode of the 
network, the breathing mode.The motivating system is the incommensurate phase of 
krypton on graphite. Under the harmonic approximation for the krypton-krypton 
interaction, the effective mass, and strain field interactions between domain walls 
are identified. With this information, a renormalised model of the domain walls 
accurately matches the phason dynamics obtained from an adatom normal mode 
calculation. We then consider the anharmonic nature of the krypton-krypton in- 
teraction. The mass and interaction between domain walls are modified. We show 
that a normal mode calculat,ion based on a quasi-harmonic approximation provides 
an inaccurate description of the phason dynamics. 

1. Introduction 

Solitons occur in many different physical systems and have stimulated numerous stud- 
ies. Particularly well studied cases are those involving the sine-Gordon equation. The 
motivation for our study was to  understand t,he dynamics of incommensurate monolay- 
ers. The applicability of the sine-Gordon equation to such systems was demonstrated 
first by Frank and van der Merwe (1949). Excellent reviews of the subject have been 
provided by Bak (1982) and Pokrovsky and Talapov (1984). An excellent review of 
the latest experimental work on the properties of the krypton on graphite system is 
provided by Specht el a l  (1987). 

Our particular focus has been on the incommensurate solid phase of krypton on 
graphite. The structure of this system is shown in figure 1. This system is two- 
dimensional, with distinct soliton-like domain walls. Graphite has preferred adsorption 
sites that  form a triangular lattice of spacing 1.42 A ,  too close for krypton to achieve 
full occupancy. A more compat,ible spacing is 4.26 A, the spacing of a & x & 
sublattice of adsorption sites. This fills every third substrate adsorption site and such 
a solid, commensurate with the substrate, has three possible centres with respect to  
the substrate. The  incommensurate phase has a hexagonally symmetric superlattice 
of commensurate regions. Each region has neighbours centred about one of the three 
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Figure 1. Stylised figure showing the positions of the adatorns in a krypton-on- 
graphite incommensurate monolayer. The full lines represent the bonds between 
carbon atoms in the substrate. The broken lines show the boundaries of the super- 
lattice cell, while the vectors RI  and R? are the primitive vectors of the superlattice 
(from Shrimpton and Jo6s 1990). 

other adsorpton sites; the arrangement of such domains being such that a super-heavy 
domain wall separates each region (Kardar and Berker 1982). 

Molecular dynamics studies (Abraham el a1 1982, Abraham el a1 1984), and nor- 
mal mode calculations (Shrimpton e t  a1 1986) reveal that the domain walls are highly 
mobile. A very low energy excitation due to  a breathing of the domain wall lattice 
was found. This breathing mode preserves the total length of the domain walls (Vil- 
lain 1980), and except for a repulsion between the strain fields of the vertices, would 
be degenerate in energy. The repulsion between the vertices causes the network to 
oscillate (breathe) about the equilibrium configuration. String-like vibrational modes 
of the domain walls are also apparent, and a renormalised model based on strings 
connected a t  vertices to  form a honeycomb network has been developed (Shrimpton 
and Jo6s 1989). This renormalised model successfully describes the vibrational modes 
found through the adatom normal mode calculation (Shrimpton et a1 1986). 

This paper focuses on the low energy breathing mode. This mode represents the 
extension of the one-dimensional soliton motion to a two-dimensional network. In the 
following section we review the phason properties of the sine-Gordon equation and 
show how renormalised propert,ies can be extracted. With this understanding, section 
3 considers the honeycomb network of domain walls. Because our motivation is to 
model a real system for which the interatomic potentials are anharmonic (Shrimpton 
e t  a1 1984), section 4 shows how anharmonicity affects the results of normal mode 
calculations. 

2. ID continuum theory 

While the sine-Gordon equation has exact solutions (Forest and McLaughlin 1982), 
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the sine-Gordon equation itself provides only an approximate description of realistic 
systems. We therefore, in this section, focus only on the low energy phason dynamics 
of the system. The soliton solutions appropriate to incommensurate systems are kink 
chains. The solitons have mass and repel each other and low energy oscillations of 
the solitons have been shown to exist (McMillan 1977, Pokrovsky and Talapov 1978, 
Novaco 1980). We show in this section, how the mass and interaction between solitons 
can be extracted, and that this renormalised description is valid even when the solitons 
are strongly overlapped. 

The potential energy U of the adatoms in the monolayer is given by 

1 
U = - @(T - T ' )  + vg [l - cos(g * T ) ]  

T ,T '  9 

where T is the position of an adatom, @ is the interaction potential between adatoms, 
and Vg is the corrugation of the subst,ra.te interaction. The first summation excludes 
the possibility of T = T ' ,  and the second summatmion ranges over the first shell of 
adsorption site reciprocal lattice vectors. 

It is useful to  describe T as having a disphcement U from the position R, that 
the adatom would have if the monolayer was commensurate. For a uniaxial system of 
domain walls, U is perpendicular to and has variation perpendicular to a reciprocal 
lattice vector g of the adsorption sites. For simplicity and without loss of generality, 
the direction of U is taken to be in the 2: direct,ion. By expanding @ about R, - RL 
and by describing U(.) in a continuum expansion, U is given to quadratic order in 
strain by 

- U = U, + 2 1" g d o +  - + 3P 1" ( 2 ) ' d r  + 4Vg [ l -  1" COS( $) dr]  
N 4L 32L 

where 

N is the total number of adatoms, L is the distance between domain walls, and b, 
is the spacing of the substrate adsorption sites. To minimise the energy, U(.) must 
satisfy the integrated sine-Gordon equation 

2 

T(Bz) =r -4Vgcos  - . (2r) a + 3 p  du 

Because one domain wall causes a shift of one adsorption sit,e 

1" 2 d r  = -b, 

( 3 )  

(4) 

if the domain wall increases the density of the monolayer. On the other hand, if the 
domain wall decreases the density of the monolayer, the integra.1 in (4) equals +b,. 
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I t  is useful to  define A = (a + 3/?)/16 and r, = 4Vg. Given these values, the form 
and number of domain walls depends on the value of r in equation (3) .  In particular 
the separation between domain walls L depends on r as 

L(T) = lc {: [r + r, cos ( 7)]}-1’2 du. (5) 

I t  must be noted that  L is not the distance between domain walls. Rather L is the 
distance across an equivalent number of atoms in the commensurate configuration. 
The actual distance between domain walls L,  = L k b,, depending on whether or not 
the density of the monolayer is decreased or increased by the domain wall. For the 
sake of simplicity only the case L ,  = L - b,, where the density of the monolayer is 
increased, will be considered. As a further note, in the commensurate limit L + co, 
the value of T -+ rc in (5). 

The  Hamiltonian for the system of adatoms is given in the continuum approxima- 
tion by 

Pokrovsky and Talapov (1984), (section 2.6) have solved this equation for the motion 
of the adatoms in the limit of infinitesimal oscillations. From this solution, the one 
dimensional system of domain walls has an acoustic mode with sound velocity 

where m is the mass per adatom, k = 2 ~ , / ( r + r ~ ) ~ / ~ ,  and K ( h )  and E ( t )  are complete 
elliptic integrals of the first and second kind. The additional factor of 1 - E ,  with misfit 
E = b,/L, accounts for the fact that  the wavevector q is relative to the actual distance 
L ,  over which the domain wall configuration is periodic. 

In a renormalised description, the domain walls can be assigned a mass p per 
length, and an interaction energy V ( L z )  per length. For a given wavevector q ,  the 
domain walls vibrate with frequency 

from which, the sound velocit,y c = ( V ” ( L , ) / P ) ~ / ~ L , ,  To test the renormalised de- 
scription, therefore, the effective mass p and the interaction potential V ( L z )  need to  
be determined and a comparison made with (7). 

From equation (2),  the energy per adatom WIN will be a function of r .  The effect 
of the vapour above the monolayer can be taken into account by subtracting from U / N  
the chemical potential p of the va.pour. The effective energy density of the monolayer 
is then Ed = ( U / N  - p ) / s  where s is the area per adatom. Using ( 2 )  
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where 

F ( r ) =  ~ ~ c { ~ [ r + r c c o s ( ~ ) ] } ” ’ d u .  b, 

The energy per domain wall lengt,h W which includes the domain wall interaction 
energy V(L,) is obtained from the difference in energy density between the incom- 
mensurate and commensurate monolayer configuration. The commensurate energy 
density is given by E, = (Uo - p ) / s o  where so = ( 3 4 / 2 ) b :  is the area per adatom of 
the commensurate configuration. The area per adatom of the incommensurate con- 
figuration varies with the misfit E as s = ( 1  - €)so. The energy density difference is 
then 

E, - E, = (b , / sL)[F(r)  - + U0 - + ( L / ~ , ) ( T ~  - r ) ]  (11) 

and the energy per domain wall is L,L,(E, - E,) where L ,  = L(1- E )  is the distance 
between domain walls and L,  is the length of the domain walls. Given the fact that  
sL = soLC,  the energy per domain wall length 14‘ is 

W(7)  = (bc/so)[F(r)  - iff + U0 - /I + ( ~ / b , ) ( . r ,  - 711. (12) 

The interaction potential V(L , )  will be, within an additive constant, given by 
W ( r ) .  Correspondingly, V ‘ ( L z )  = (aW/ar ) (ar /aL , ) ,  and because (10) and (5) give 
aF/ar  = q r ) / b ,  

V / (L , )  = (r, - 7)/so. (13) 

To obtain V”(L,) it is necessary to  know ar /aL, .  From (5) and given the properties 
of elliptic integrals of the third type, 

so 

The mass p per domain wall length can be det,ermined from the kinetic contribution 
to  the Hamiltonian in equation (6). Because the domain walls can be translated by 
shifting the origin in the renormalised description, a++ X ( t ) ) / a t  = au/ax  t, and 
the domain wall has an effective kinetic mass per length of 

which by (10) can be expressed as p = m b c F ( r ) / ( A s o ) .  Given the form for V”(L,) in 
(15) the sound velocity is 

t U is also a function of k(t). This equation is only accurate in the limit of low velocity. 
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Because F ( r )  = 2/?r[2A(r + ~ , ) 3 ~ / ~ E ( k )  and L,(r) = bC/a[2A/( . r  + ~ , ) ] l / ~ I i ' ( k ) (  1 - E )  

with k = [27,/(r + T , ) ] ~ / ~  the renormalised description agrees with the exact solution 
(7) regardless of whether the domain walls are distinctly separated or not. Moreover, 
this process can be repeated with the substrate potential of (2) replaced by a more 
general periodic function of 2?ru/bc; the resulting renormalised description matches 
the general result also given in section 2.6 of Pokrovsky and Talapov (1984). 

With this understanding, the two-dimensional case can be considered. In the 
acoustic limit, the renormalised model must match the dispersion curves of the adatom 
normal mode calculation. If the renormalised model continues to match the disper- 
sion curves for wavevectors away from the acoustic limit then the domain walls are 
sufficiently distinct that a renormalised model is valid. As will be evident, there can 
be significant overlap of the domain walls and an accurate renormalised description of 
the domain wall motion can still be obta.ined. 

3. Honeycomb domain wall network 

While a system of parallel commensurate domains is a possible configuration for an 
incommensurate monolayer, this is not the only possibility. The configuration of the 
monolayer can also be a hexagonal superlattice of commensurate domains. The domain 
walls then form a honeycomb network. This configuration is in general energetically 
favoured. The dynamics of this system have been studied, and a renormalised model 
has been constucted which accurately matches the motion of the domain wall lattice 
(Shrimpton and Jobs 1989). 

The renormalised model shows that the dynamics of the domain wall lattice can 
be described in terms of string oscillators which are attached at vertices to form a 
honeycomb network. The vertices are flexible rotators which interact with each other. 
Most vibrational modes depend on the string characteristics, the vertex dynamic be- 
haviour, and the vertex interactions. The lowest energy mode, on the other hand, 
involves simply the kinetic mass of the domain wall network and the pair wise inter- 
action between vertices. This mode is commonly known as the breathing mode, and 
is comparable to the vibrational mode of the one-dimensional case discussed in the 
preceding section. 

Both the kinetic mass and the vertex pair interaction can be determined from 
the domain wall profile and energy of the static incommensurate monolayer. The 
vibrational behaviour of the breathing mode can be determined from this renormalised 
information and a comparison made with the adatom normal mode calculations. The 
renormalised model predicts that the dispersion curve associated with the breathing 
mode should vary as 

where 

and 
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Ri are first-shell reciprocal lattice vectors of the superlattice, Rij = Ri - Rj, b = 
V”(L) is the second derivative of the vertex to vertex strain field interaction, and 
M is the effective mass per domain associated with the domain walls. The form 
(18) accurately matches that found from adatom normal mode calculations for the 
dispersion curve of the breathing mode, and the value 3b/2M can be fitted as a 
parameter. 

The kinetic mass of the domain wall network can be obtained from the static profile 
of the adatoms. As done in previous work (Shrimpton e l  a1 1984), the positions of the 
adatoms T can be described as having a shift U from a triangular lattice of averaged 
positions R. With the assumption of superlattice periodicity, 

where the vectors R form a triangular lattice with spacing and angle determined by 
the density and orientation of the monolayer, and the summation proceeds over all 
reciprocal lattice vectors qlm of the superlattice. The vectors R can be related to 
the a x f i  lattice of commensurate vectors R, by R = CR,. If t,he monolayer is 
not rotated C can be replaced by a scalar const,ant C. This will be assumed in the 
following. 

If the positions of the adatoms r are described by shifts u,(R,) from commensurate 
positions R, then 

The domain walls can then be moved across the monolayer by introducing a time 
dependent shift vector X ( t )  so that the adatoms have positions 

T = R, + uC(Rc + X ( t ) ) .  ( 2 2 )  

The kinetic energy EK per superlattice domain, associated with the time variation of 
X ( t ) ,  by (20), (2l) ,  and (22) has the form :Ad,?’ where 

is the kinetic mass per domain, N is the number of adatoms per domain and m is the 
mass per adatom. 

The vertex to vertex interaction can be determined from static results of how the 
energy density E of the monolayer varies with coverage. The energy per domain as- 
sociated with the domain walls is ( 3 d ) / 2 L 2 ( E ( c )  - E(O)),  where E ( € )  is the energy 
density and L = b,( l/t  - l)/d is the length per side of the domain. The energy 
associated with the domain walls can be broken int.0 t,erms constant in L which pro- 
vide the energy per vertex, terms linear in L which provide the energy per length of 
domain walls, and non-linear terms which provide the strain field interactions within 
the monolayer. The dominant strain field interaction is that between vertices. The 
domain wall to domain wall interaction is carried across the commensurate domains 
and is damped out exponentially. The vertex to vertex interaction, on the other hand, 
extends along the domain walls. Beca.use the adatoms on the domain walls are not 
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near registry with the substrate, the substrate does not influence the vertex to vertex 
interaction. Its range is limited only by adatom pair interactions and, similar to  strain 
field interactions in elastic media, its decay is algebraic. The source of the interaction 
is the focused displacement fields of the domain walls when they intersect at the ver- 
tex. This focusing creates a density extreme, which is eased by a vertex strain field. 
The intersection of the vertex strain fields results in a vertex to vertex interaction. 

A hexagonally symmetric incommensurate monolayer was studied for a variety 
of coverages. The method of calculation for the energy of the monolayer has been 
presented previously (Shrimpton e t  a1 1984), as has been the method of calculating 
monolayer dynamics (Shrimpton et a1 1986). Because the dynamical information is 
obtained under a quasi-harmonic approximation, to make the comparison with the 
renormalised prediction accurate, the adatom interactions were described by a nearest 
neighbour pair interaction @ ( r )  with form 

The values a. = -163.75 I<, a l  = 120.01 I< A-’, a? = 112.42 I< A-’, and r,  = 4.26 A 
were chosen because they match i n  the commensurate limit the krypton-krypton pair 
interaction. 

The substrate interaction was  modelled by the potential 

where T is the lateral position of the adatom. For physisorbed monolayers, to a good 
approximation, the summation can be restricted to the first shell of the substrate 
adsorption site reciprocal lattice vectors g (Steele 1973). Equation (25) introduces the 
variable Vg , known as the substrate corrugation, which gives the non-uniformity of the 
substrate interaction. In order to make the domain walls broad enough that pinning 
effects are insignificant, the substrate corrugation was  taken to be 2.0 I<. Under such 
circumstances the monolayer is essentially an elastic media: The analysis represents a 
direct extension of the one-dimensional sine-Gordon equation, to a two-dimensional 
system with hexagonal periodicity. 

The average energy per adatom, resulting from the calculation, as a function of the 
monolayers misfit is shown in figure 2. The three curves shown are least squares fits of 
either fifth- or sixth-order polynomials. Fit 1 is a sixth-order polynomial which takes 
into account all points up to a misfit of 4.5%. Fit 2 is a fifth-order polynomial which 
takes into account all points up to a misfit of 3.1%. Fit 3 is a fifth-order polynomial 
which takes into account all poiiit,s up to 3.0%. As shown in figure 2, they all follow 
the data extremely well, and given the resolution they are indistinguishable. While 
higher order polynomial fits over more restricted ranges could he performed, this was 
not useful because the data have calculational inaccuracies which must be smoothed. 

If the average energy per adatom U / N  varies with the misfit c as 

U / N  = p, - p + clc + c2c2 + c3c3 + r4c4 + cjc5 + c6c6 

V”(L)  = 2c3c3 + Gc4c4 + 12c,c5 + 20c6c6. 

(26) 

the change in the vertex interaction potential V”(L)  is given by 

(27) 
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Figure 2. Energy per adatom as a funct,ion of misfit for a monolayer with adatoms 
that interact with potential (24) when the substrate corrugation is 2.0 I<. There are 
3 polynomial fits to the data. As shown t.hey are indistinguishable. 

The mass of the domain walls per domain is determined by ( 2 3 )  from the structure of 
the incommensurate monolayer. The normal mode calculation provides the dispersion 
relation for the breathing mode. The dispersion information is accurately matched 
by the form predicted from equation (18). The value of 3b/2M is extracted as a 
parameter fit. This value as well as the effective mass, and the values 3Vt ’ (L) /2M 
obtained from the three possible fits to ( 2 G )  are shown in table 1. It is clear that within 
the variability of the polynomial fit, the renormalised description of the domain wall 
dynamics agrees with the adatom normal mode results. As expected from the previous 
section, the renormalised model is applicable even at misfits as great as 3.03%. At this 
density, the domain walls are so overlapped that the structure of the incommensurate 
phase is more that of a modulated solid than a network of domain walls. 

Table  1. Vertex interaction parameters 3b/2A4 obtained from dynamic information, 
and the corresponding values of 3V”(L)/2M calculated for a variety of monolayer 
misfits when the adatom pair int,eraction is a nearest neighbour harmonic polynomial 
and the substrate corrugation is 2.0 IC. E gives the misfit of the monolayer, M is the 
calculated kinetic mass per domain. 

~~ ~~~ 

$V”(L)/M (1021 s-2) 
€ M $ b/M 
(%) (lo2’ kg) Fit 1 Fit 2 Fit 3 ( I O z o  s - ~ )  

3.03 0.694 4.224 4.i36 8.829 47.64 
2.78 0.754 2.511 2.439 3.817 26.78 
2.56 0.818 1.517 1.334 1.658 15.80 
2.38 0.885 0.936 0.775 0.725 9.59 
2.22 0.953 0.586 0.482 0.325 5.90 
2.08 1.022 0.378 0.325 0.171 3.68 
1.96 1.093 0.254 0.232 0.118 2.35 
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4. Anharmonic effects 

Theories to  describe the properties of domain wall networks rely heavily on the as- 
sumption that the adatom interaction is harmonic. However, this assumption is not 
generally valid when dealing with real systems (Shrimpton et  a1 1984, Gordon and 
Lancon 1985). Dynamic information for domain wall lattices can be obtained from 
molecular dynamics simulations. However, the large size of the domain wall system, 
and the long time scales for domain wall motion make such calculations difficult. Nor- 
mal mode calculations can be performed to obtain phason information, except that an- 
harmonicity is incorporated only in a quasi-harmonic sense. Because this method was 
used to  obtain dynamic information for the domain wall lattice, this section presents 
a comparison with the renormalised model for the anharmonic system of krypton on 
graphite. The potentials used have been described in a previous paper (Shrimpton 
et  a1 1984) and the substrate corrugation is taken to  be 7.0 K ,  a typical value. The 
form (18) fits the normal mode dispersion data accurately, and the value 3b/2M is 
extracted as a parameter. 

As before, the vertex interaction potential V ( L )  is determined from static results of 
how the energy of the monolayer varies with density. From previous work (Shrimpton 
et  a1 1988), the energy density E of the incommensurate monolayer is known to vary 
with misfit E as 

where b, is the spacing of the substrate adsorption sites, ,uc is the chemical potential 
of the commensurate monolayer, /.I is the chemical potential of the vapour abov'e the 
monolayer, E, is the energy per adatom of t,he commensurate monolayer, and A and 
,B are additional fitting parameters related to how the misfit of the monolayer varies 
with chemical potential. The value of V"(L)  extracted from this varies with misfit as 

€1+1/P[(l - €)/P - 2 + E] 
dx + 2A-I/P ( 1' xl/@ 

VI'(L) = 2 
36, (1  - x)3 (1 - E)2  

From (23) the mass associated with the domain walls is obtained. To assess the 
effect of anharmonicity on the domain wall mass, an effective domain wall density is 
calculated. Because the domain walls move perpendicular to their length, the kinetic 
mass M is not 3pL. Instead the domain wall density p is related to the mass per 
domain M by M = $ p L .  For calculational purposes, the length of the domain wall 
segments L can be determined from t,he misfit c of the monolayer by L = ( l / ~  - 1) 
1.42 A. The values of M and p are shown in table 2 for a variety of monolayer densities. 
As the misfit is decreased, the density p t,ends to that of an isolated domain wall. 
From section 2 a domain wall density can also be obtained. In the commensurate 
limit, p = 8 m / ( 3 ~ d ~ ) ( 4 V ~ / A ) ~ / ~ .  For krypton, m = 1.391 x kg is the mass 
per krypton adatom, and d, = 4.20 8, is the commensurate lattice spacing. The 
commensurate value of A = 4781.97 I<, and when the substrate corrugation is Vg = 
7.0 K ,  p = 2.12 x kg m-l.  It is clear that after extrapolating the values of p in 
table 2 the domain wall density p is less than 2.12 x kg m-'. Anharmonicity 
decreases the effective mass of the domain walls, a fact in agreement with Gordon 
and Laneon (1985) who found that the anharmonic nature of the adatom interaction 
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Table 2. Vertex interaction parameters 3b/2M for a variety of misfits obtained 
from dynamic information compared to 3Vf‘(L)/2M obtained from the renormalized 
description for a monolayer of krypton on graphite, when the substrate corrugation 
is 7.0 K .  M is the kinetic mass per domain, p is the mass per domain wall length. 

€ M P ib/M $ vif ( L )  /M 
(94) kg) (1O-l ’  kg m-l)  (lozo s - ~ )  (lo2’ s-’) 

3.33 
3.03 
2.78 
2.56 
2.38 
2.22 
2.08 
1.96 
1.85 

0.711 
0.792 
0.876 
0.963 
1.051 
1.140 
1.229 
1.319 
1.408 

1.113 
1.127 
1.143 
1.160 
1.175 
1.189 
1.202 
1.214 
1.224 

5.64 
1.35 
0.49 
1.23 
1.46 
0.57 
0.26 

N 0.14 
N 0.07 

6.77 
3.50 
1.92 
1.09 
0.66 
0.41 
0.26 
0.17 
0.12 

broadens the domain walls and effectively increases the elastic constants required to 
describe the domain wall profiles. 

The values A = 1.778 and p = 0.210, to be used in ( 2 9 )  are obtained from fitting 
( 2 8 )  to the calculated energy variation with density. These numbers do not compare 
with A = 0.079 and p = 0.33, found from experiment (Stephens e l  a1 1984) because 
zero point motion of the adatoms shoulcl not be included in the calculation (Shrimp- 
ton el a1 1988). From calculations of the potential energy of the incommensurate 
monolayer, the values of A = 1.778% and p = 0.210. This is different from the ex- 
perimental results because the zero point motion of the adatoms is not considered. It 
is clear from table 2 that  the value of 3 V 1 ’ ( L ) / 2 M  obtained from the renormalised 
description does not agree with the parameter value 3 b / 2 M  obtained from the nor- 
mal mode calculation. The value of V”(L)  calculated from the variation in energy 
density is much larger than the value of b required to fit the dynamic information. 
That these two values do not agree reflects the fact that they do not contain the same 
information. The krypton-krypton interaction is anharmonic, and the effective quasi- 
harmonic constants of the adatoms vary significantsly with spacing. To draw from the 
ID continuum results, if U,,, a and A vary with L in  equation (11) then the sound 
velocity c of (7) will not match (V( L,)/p)’12L,. Correspondingly, the dynamically 
derived parameter b for the domain wall network does not contain information about 
the changing elastic nature of the adatoms while V”(L)  does. 

5 .  Conclusion 

Similar to one-dimensional cases, two-dimensional networks of domain walls have pha- 
son dynamics. The domain walls have an effective mass, and the lowest energy vibra- 
tion of the domain wall lattice is controlled by a vertex to vertex strain field interaction. 
This interaction can be renormalised as a vertex-vert,ex pair potential. This potential 
together with the effective domain wall mass can be used in  a renormalised model to 
calculate domain wall motion. If the monolayer is not an elastic medium, the domain 
wall motion obtained from an atomic normal mode calculation will not be accurate. 
This must be taken into account if t8he sine-Gordon equation, or its two-dimensional 
extension, is used via a quasi-harmonic approximation to study phason dynamics of 
realistic systems. 
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